Arbeitspapier

Plug-in semiparametric estimating equations

In parametric regression problems, estimation of the parameter of interest is typically achieved via the solution of a set of unbiased estimating equations. We are interested in problems where in addition to this parameter, the estimating equations consist of an unknown nuisance function which does not depend on the parameter. We study the effects of using a plug-in nonparametric estimator of the nuisance function (for example, a local-linear regression estimator) on the estimability of the parameter. In particular, we specify conditions on the functional estimator which ensure that the parametric rate of consistency for estimating the parameter of interest is preserved, and we give a general asymptotic covariance formula. We apply this theory to three examples.

Language
Englisch

Bibliographic citation
Series: SFB 373 Discussion Paper ; No. 1997,13

Classification
Wirtschaft
Subject
Nonparametric Regression
Missing Data
Generalized Linear Models
Local Linear Regression
Logistic Regression
Partially Linear Models
Semiparametric Regression

Event
Geistige Schöpfung
(who)
Gutierrez, Roberto G.
Carroll, Raymond J.
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(where)
Berlin
(when)
1995

Handle
URN
urn:nbn:de:kobv:11-10063736
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Gutierrez, Roberto G.
  • Carroll, Raymond J.
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Time of origin

  • 1995

Other Objects (12)