Arbeitspapier
Double Machine Learning Based Program Evaluation under Unconfoundedness
This paper consolidates recent methodological developments based on Double Machine Learning (DML) with a focus on program evaluation under unconfoundedness. DML based methods leverage flexible prediction methods to control for confounding in the estimation of (i) standard average effects, (ii) different forms of heterogeneous effects, and (iii) optimal treatment assignment rules. We emphasize that these estimators build all on the same doubly robust score, which allows to utilize computational synergies. An evaluation of multiple programs of the Swiss Active Labor Market Policy shows how DML based methods enable a comprehensive policy analysis. However, we find evidence that estimates of individualized heterogeneous effects can become unstable.
- Sprache
-
Englisch
- Erschienen in
-
Series: IZA Discussion Papers ; No. 13051
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
- Thema
-
causal machine learning
conditional average treatment effects
optimal policy learning
individualized treatment rules
multiple treatments
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Knaus, Michael C.
- Ereignis
-
Veröffentlichung
- (wer)
-
Institute of Labor Economics (IZA)
- (wo)
-
Bonn
- (wann)
-
2020
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Knaus, Michael C.
- Institute of Labor Economics (IZA)
Entstanden
- 2020