Arbeitspapier

Double Machine Learning Based Program Evaluation under Unconfoundedness

This paper consolidates recent methodological developments based on Double Machine Learning (DML) with a focus on program evaluation under unconfoundedness. DML based methods leverage flexible prediction methods to control for confounding in the estimation of (i) standard average effects, (ii) different forms of heterogeneous effects, and (iii) optimal treatment assignment rules. We emphasize that these estimators build all on the same doubly robust score, which allows to utilize computational synergies. An evaluation of multiple programs of the Swiss Active Labor Market Policy shows how DML based methods enable a comprehensive policy analysis. However, we find evidence that estimates of individualized heterogeneous effects can become unstable.

Sprache
Englisch

Erschienen in
Series: IZA Discussion Papers ; No. 13051

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Thema
causal machine learning
conditional average treatment effects
optimal policy learning
individualized treatment rules
multiple treatments

Ereignis
Geistige Schöpfung
(wer)
Knaus, Michael C.
Ereignis
Veröffentlichung
(wer)
Institute of Labor Economics (IZA)
(wo)
Bonn
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Knaus, Michael C.
  • Institute of Labor Economics (IZA)

Entstanden

  • 2020

Ähnliche Objekte (12)