Arbeitspapier

ddml: Double/Debiased Machine Learning in Stata

We introduce the package ddml for Double/Debiased Machine Learning (DDML) in Stata. Estimators of causal parameters for five different econometric models are supported, allowing for flexible estimation of causal effects of endogenous variables in settings with unknown functional forms and/or many exogenous variables. ddml is compatible with many existing supervised machine learning programs in Stata. We recommend using DDML in combination with stacking estimation which combines multiple machine learners into a final predictor. We provide Monte Carlo evidence to support our recommendation.

Language
Englisch

Bibliographic citation
Series: IZA Discussion Papers ; No. 15963

Classification
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Econometric Software
Subject
st0001
causal inference
machine learning
doubly-robust estimation

Event
Geistige Schöpfung
(who)
Ahrens, Achim
Hansen, Christian B.
Schaffer, Mark E
Wiemann, Thomas
Event
Veröffentlichung
(who)
Institute of Labor Economics (IZA)
(where)
Bonn
(when)
2023

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Ahrens, Achim
  • Hansen, Christian B.
  • Schaffer, Mark E
  • Wiemann, Thomas
  • Institute of Labor Economics (IZA)

Time of origin

  • 2023

Other Objects (12)