Arbeitspapier

Parametric covariance matrix modeling in Bayesian panel regression

The full Bayesian treatment of error component models typically relies on data augmentation to produce the required inference. Never stricly necessary a direct approach is always possible though not necessarily practical. The mechanics of direct sampling are outlined and a template for including model uncertainty is described. The needed tools, relying on various Markov chain Monte Carlo techniques, are developed and direct sampling, with and without effect selection, is illustrated.

Sprache
Englisch

Erschienen in
Series: SSE/EFI Working Paper Series in Economics and Finance ; No. 565

Klassifikation
Wirtschaft
Bayesian Analysis: General
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Computational Techniques; Simulation Modeling
Thema
Bayesian panel regression
parametric covariance
model selection
Bayes-Statistik
Panel
Nichtparametrisches Verfahren
Theorie

Ereignis
Geistige Schöpfung
(wer)
Salabasis, Mickael
Ereignis
Veröffentlichung
(wer)
Stockholm School of Economics, The Economic Research Institute (EFI)
(wo)
Stockholm
(wann)
2004

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Salabasis, Mickael
  • Stockholm School of Economics, The Economic Research Institute (EFI)

Entstanden

  • 2004

Ähnliche Objekte (12)