Arbeitspapier
The Minimal Dominant Set is a Non-Empty Core-Extension
A set of outcomes for a TU-game in characteristic function form is dominant if it is, with respect to an outsider-independent dominance relation, accessible (or admissible) and closed. This outsider-independent dominance relation is restrictive in the sense that a deviating coalition cannot determine the payoffs of those coalitions that are not involved in the deviation. The minimal (for inclusion) dominant set is non-empty and for a game with a non-empty coalition structure core, the minimal dominant set returns this core.
- Language
-
Englisch
- Bibliographic citation
-
Series: Nota di Lavoro ; No. 50.2003
- Classification
-
Wirtschaft
Cooperative Games
- Subject
-
Core
Non-emptiness
Indirect dominance
Outsider-independence
Spieltheorie
Core
Theorie
- Event
-
Geistige Schöpfung
- (who)
-
Kóczy, László Á.
Lauwers, Luc
- Event
-
Veröffentlichung
- (who)
-
Fondazione Eni Enrico Mattei (FEEM)
- (where)
-
Milano
- (when)
-
2003
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Kóczy, László Á.
- Lauwers, Luc
- Fondazione Eni Enrico Mattei (FEEM)
Time of origin
- 2003