Arbeitspapier

The Minimal Dominant Set is a Non-Empty Core-Extension

A set of outcomes for a TU-game in characteristic function form is dominant if it is, with respect to an outsider-independent dominance relation, accessible (or admissible) and closed. This outsider-independent dominance relation is restrictive in the sense that a deviating coalition cannot determine the payoffs of those coalitions that are not involved in the deviation. The minimal (for inclusion) dominant set is non-empty and for a game with a non-empty coalition structure core, the minimal dominant set returns this core.

Language
Englisch

Bibliographic citation
Series: Nota di Lavoro ; No. 50.2003

Classification
Wirtschaft
Cooperative Games
Subject
Core
Non-emptiness
Indirect dominance
Outsider-independence
Spieltheorie
Core
Theorie

Event
Geistige Schöpfung
(who)
Kóczy, László Á.
Lauwers, Luc
Event
Veröffentlichung
(who)
Fondazione Eni Enrico Mattei (FEEM)
(where)
Milano
(when)
2003

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Kóczy, László Á.
  • Lauwers, Luc
  • Fondazione Eni Enrico Mattei (FEEM)

Time of origin

  • 2003

Other Objects (12)