Arbeitspapier

Nonparametric estimation of an additive quantile regression model

This paper is concerned with estimating the additive components of a nonparametric additive quantile regression model. We develop an estimator that is asymptotically normally distributed with a rate of convergence in probability of n-r/(2r+1) when the additive components are r-times continuously differentiable for some r ≥ 2. This result holds regardless of the dimension of the covariates and, therefore, the new estimator has no curse of dimensionality. In addition, the estimator has an oracle property and is easily extended to a generalized additive quantile regression model with a link function. The numerical performance and usefulness of the estimator are illustrated by Monte Carlo experiments and an empirical example.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP07/04

Classification
Wirtschaft
Subject
Nichtparametrisches Verfahren
Regression
Schätztheorie

Event
Geistige Schöpfung
(who)
Horowitz, Joel L.
Lee, Sokbae
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2004

DOI
doi:10.1920/wp.cem.2004.0704
Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Horowitz, Joel L.
  • Lee, Sokbae
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2004

Other Objects (12)