Arbeitspapier

R robustified additive nonparametric regression

Additive modelling is known to be useful for multivariate nonparametric regression as it reduces the complexity of problem to the level of univariate regression. This usefulness could be compromised if the data set was contaminated by outliers whose detection and removal are particularly difficult to achieve in high dimension. We propose an estimation procedure for the additive component of the regression function , less sensitive to possible outliers in the sample. Our procedure is based on marginal integration of conditional R-estimators. In addition to univariate rate of convergence and asymptotic distribution, we also obtain robustness results for our estimator. All of our results are valid for a broad class of ß mixing processes. Monte Carlo findings confirm the theoretical results in finite sample.

Sprache
Englisch

Erschienen in
Series: SFB 373 Discussion Paper ; No. 2002,78

Klassifikation
Wirtschaft
Thema
R-estimator
Additive model
Kernel estimator
Marginal integration
Robustness

Ereignis
Geistige Schöpfung
(wer)
Tamine, Julien
Härdle, Wolfgang
Yang, Lijian
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(wo)
Berlin
(wann)
2002

Handle
URN
urn:nbn:de:kobv:11-10049496
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Tamine, Julien
  • Härdle, Wolfgang
  • Yang, Lijian
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Entstanden

  • 2002

Ähnliche Objekte (12)