Arbeitspapier

M robustified additive nonparametric regression

Additive modelling has been widely used in nonparametric regression to circumvent the curse of dimensionality, by reducing the problem of estimating a multivariate regression function to the estimation of its univariate components. Estimation of these univariate functions, however, can suffer inaccuracy if the data set is contaminated with extreme observations. As detection and removal of outliers in high dimension is much more difficult than in one dimension, we propose an M type marginal integration estimator that automatically corrects the extreme influence of outliers. We establish the robustness and obtain the asymptotic distribution of the M estimator through the functional approach. As a consequence, our results are valid for ,ß-mixing samples under mild constraints. Monte Carlo study confirm our theoretical results.

Sprache
Englisch

Erschienen in
Series: SFB 373 Discussion Paper ; No. 2002,69

Klassifikation
Wirtschaft
Thema
Frechet differential
kernel estimator
marginal integration
M estimator
outliers
robustness

Ereignis
Geistige Schöpfung
(wer)
Tamine, Julien
Härdle, Wolfgang
Yang, Lijian
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(wo)
Berlin
(wann)
2002

Handle
URN
urn:nbn:de:kobv:11-10049337
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Tamine, Julien
  • Härdle, Wolfgang
  • Yang, Lijian
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Entstanden

  • 2002

Ähnliche Objekte (12)