Regression density estimation using smooth adaptive Gaussian mixtures

Abstract: We model a regression density flexibly so that at each value of the covariates the density is a mixture of normals with the means, variances and mixture probabilities of the components changing smoothly as a function of the covariates. The model extends existing models in two important ways. First, the components are allowed to be heteroscedastic regressions as the standard model with homoscedastic regressions can give a poor fit to heteroscedastic data, especially when the number of covariates is large. Furthermore, we typically need fewer components, which makes it easier to interpret the model and speeds up the computation. The second main extension is to introduce a novel variable selection prior into all the components of the model. The variable selection prior acts as a self-adjusting mechanism that prevents overfitting and makes it feasible to fit flexible high-dimensional surfaces. We use Bayesian inference and Markov Chain Monte Carlo methods to estimate the model. Simulat

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Postprint
begutachtet (peer reviewed)
In: Journal of Econometrics ; 153 (2009) 2 ; 155-173

Ereignis
Veröffentlichung
(wo)
Mannheim
(wann)
2009
Urheber
Villani, Mattias
Kohn, Robert
Giordani, Paolo

DOI
10.1016/j.jeconom.2009.05.004
URN
urn:nbn:de:0168-ssoar-254022
Rechteinformation
Open Access unbekannt; Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Villani, Mattias
  • Kohn, Robert
  • Giordani, Paolo

Entstanden

  • 2009

Ähnliche Objekte (12)