Journal article | Zeitschriftenartikel

Regression density estimation using smooth adaptive Gaussian mixtures

We model a regression density flexibly so that at each value of the covariates the density is a mixture of normals with the means, variances and mixture probabilities of the components changing smoothly as a function of the covariates. The model extends existing models in two important ways. First, the components are allowed to be heteroscedastic regressions as the standard model with homoscedastic regressions can give a poor fit to heteroscedastic data, especially when the number of covariates is large. Furthermore, we typically need fewer components, which makes it easier to interpret the model and speeds up the computation. The second main extension is to introduce a novel variable selection prior into all the components of the model. The variable selection prior acts as a self-adjusting mechanism that prevents overfitting and makes it feasible to fit flexible high-dimensional surfaces. We use Bayesian inference and Markov Chain Monte Carlo methods to estimate the model. Simulated and real examples are used to show that the full generality of our model is required to fit a large class of densities, but also that special cases of the general model are interesting models for economic data.

Regression density estimation using smooth adaptive Gaussian mixtures

Urheber*in: Villani, Mattias; Kohn, Robert; Giordani, Paolo

Rechte vorbehalten - Freier Zugang

0
/
0

Umfang
Seite(n): 155-173
Sprache
Englisch
Anmerkungen
Status: Postprint; begutachtet (peer reviewed)

Erschienen in
Journal of Econometrics, 153(2)

Thema
Wirtschaft
Sozialwissenschaften, Soziologie
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Wirtschaftsstatistik, Ökonometrie, Wirtschaftsinformatik

Ereignis
Geistige Schöpfung
(wer)
Villani, Mattias
Kohn, Robert
Giordani, Paolo
Ereignis
Veröffentlichung
(wo)
Niederlande
(wann)
2009

DOI
URN
urn:nbn:de:0168-ssoar-254022
Rechteinformation
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
Letzte Aktualisierung
21.06.2024, 16:27 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Zeitschriftenartikel

Beteiligte

  • Villani, Mattias
  • Kohn, Robert
  • Giordani, Paolo

Entstanden

  • 2009

Ähnliche Objekte (12)