Arbeitspapier

Score driven exponentially weighted moving averages and value-at-risk forecasting

A simple methodology is presented for modeling time variation in volatilities and other higher-order moments using a recursive updating scheme similar to the familiar RiskMetricsTM approach. We update parameters using the score of the forecasting distribution. This allows the parameter dynamics to adapt automatically to any nonnormal data features and robusties the subsequent estimates. The new approach nests several of the earlier extensions to the exponentially weighted moving average (EWMA) scheme. In addition, it can easily be extended to higher dimensions and alternative forecasting distributions. The method is applied to Value-at-Risk forecasting with (skewed) Student's t distributions and a time-varying degrees of freedom and/or skewness parameter. We show that the new method is competitive to or better than earlier methods in forecasting volatility of individual stock returns and exchange rate returns.

Sprache
Englisch

Erschienen in
Series: Sveriges Riksbank Working Paper Series ; No. 309

Klassifikation
Wirtschaft
Model Construction and Estimation
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods
International Financial Markets
Thema
dynamic volatilities
dynamic higher-order moments
integrated generalized autoregressive score models
Exponentially Weighted Moving Average (EWMA)
Value-at-Risk (VaR)

Ereignis
Geistige Schöpfung
(wer)
Lucas, André
Zhang, Xin
Ereignis
Veröffentlichung
(wer)
Sveriges Riksbank
(wo)
Stockholm
(wann)
2015

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Lucas, André
  • Zhang, Xin
  • Sveriges Riksbank

Entstanden

  • 2015

Ähnliche Objekte (12)