Arbeitspapier
Score driven exponentially weighted moving averages and value-at-risk forecasting
A simple methodology is presented for modeling time variation in volatilities and other higher-order moments using a recursive updating scheme similar to the familiar RiskMetricsTM approach. We update parameters using the score of the forecasting distribution. This allows the parameter dynamics to adapt automatically to any nonnormal data features and robusties the subsequent estimates. The new approach nests several of the earlier extensions to the exponentially weighted moving average (EWMA) scheme. In addition, it can easily be extended to higher dimensions and alternative forecasting distributions. The method is applied to Value-at-Risk forecasting with (skewed) Student's t distributions and a time-varying degrees of freedom and/or skewness parameter. We show that the new method is competitive to or better than earlier methods in forecasting volatility of individual stock returns and exchange rate returns.
- Sprache
-
Englisch
- Erschienen in
-
Series: Sveriges Riksbank Working Paper Series ; No. 309
- Klassifikation
-
Wirtschaft
Model Construction and Estimation
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods
International Financial Markets
- Thema
-
dynamic volatilities
dynamic higher-order moments
integrated generalized autoregressive score models
Exponentially Weighted Moving Average (EWMA)
Value-at-Risk (VaR)
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Lucas, André
Zhang, Xin
- Ereignis
-
Veröffentlichung
- (wer)
-
Sveriges Riksbank
- (wo)
-
Stockholm
- (wann)
-
2015
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Lucas, André
- Zhang, Xin
- Sveriges Riksbank
Entstanden
- 2015