Arbeitspapier
A Note on an Estimation Problem in Models with Adaptive Learning
This paper provides an example of a linear regression model with predetermined stochastic regressors for which the sufficient condition for strong consistency of the ordinary least squares estimator by Lai & Wei (1982, Annals of Statistics) is not met. Nevertheless, the estimator is strongly consistent, as shown in a companion paper, cf. Christopeit & Massmann (2013b). This is intriguing because the Lai & Wei condition is the best currently available and is referred to as “in some sense the weakest possible”. Moreover, the example discussed in this paper arises naturally in a class of macroeconomic models with adaptive learning, the estimation of which has recently gained popularity amongst researchers and policy makers.
- Sprache
-
Englisch
- Erschienen in
-
Series: Tinbergen Institute Discussion Paper ; No. 13-151/III
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Construction and Estimation
Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
- Thema
-
least-squares regression
stochastic regressors
strong consistency
minimal sufficient condition
adaptive learning
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Christopeit, Norbert
Massmann, Michael
- Ereignis
-
Veröffentlichung
- (wer)
-
Tinbergen Institute
- (wo)
-
Amsterdam and Rotterdam
- (wann)
-
2013
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Christopeit, Norbert
- Massmann, Michael
- Tinbergen Institute
Entstanden
- 2013