Arbeitspapier

A Note on an Estimation Problem in Models with Adaptive Learning

This paper provides an example of a linear regression model with predetermined stochastic regressors for which the sufficient condition for strong consistency of the ordinary least squares estimator by Lai & Wei (1982, Annals of Statistics) is not met. Nevertheless, the estimator is strongly consistent, as shown in a companion paper, cf. Christopeit & Massmann (2013b). This is intriguing because the Lai & Wei condition is the best currently available and is referred to as “in some sense the weakest possible”. Moreover, the example discussed in this paper arises naturally in a class of macroeconomic models with adaptive learning, the estimation of which has recently gained popularity amongst researchers and policy makers.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 13-151/III

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Construction and Estimation
Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
Thema
least-squares regression
stochastic regressors
strong consistency
minimal sufficient condition
adaptive learning

Ereignis
Geistige Schöpfung
(wer)
Christopeit, Norbert
Massmann, Michael
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2013

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Christopeit, Norbert
  • Massmann, Michael
  • Tinbergen Institute

Entstanden

  • 2013

Ähnliche Objekte (12)