Arbeitspapier
Consistent Estimation of Structural Parameters in Regression Models with Adaptive Learning
In this paper we consider regression models with forecast feedback. Agents' expectations are formed via the recursive estimation of the parameters in an auxiliary model. The learning scheme employed by the agents belongs to the class of stochastic approximation algorithms whose gain sequence is decreasing to zero. Our focus is on the estimation of the parameters in the resulting actual law of motion. For a special case we show that the ordinary least squares estimator is consistent.
- Language
-
Englisch
- Bibliographic citation
-
Series: Tinbergen Institute Discussion Paper ; No. 10-077/4
- Classification
-
Wirtschaft
Estimation: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
Expectations; Speculations
- Subject
-
Adaptive learning
forecast feedback
stochastic approximation
linear regression with stochastic regressors
consistency
Lernen
Rationales Verhalten
Prognoseverfahren
Regression
Stochastischer Prozess
Agentenbasierte Modellierung
Theorie
- Event
-
Geistige Schöpfung
- (who)
-
Christopeit, Norbert
Massmann, Michael
- Event
-
Veröffentlichung
- (who)
-
Tinbergen Institute
- (where)
-
Amsterdam and Rotterdam
- (when)
-
2010
- Handle
- Last update
-
10.03.2025, 11:45 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Christopeit, Norbert
- Massmann, Michael
- Tinbergen Institute
Time of origin
- 2010