Arbeitspapier

Consistent Estimation of Structural Parameters in Regression Models with Adaptive Learning

In this paper we consider regression models with forecast feedback. Agents' expectations are formed via the recursive estimation of the parameters in an auxiliary model. The learning scheme employed by the agents belongs to the class of stochastic approximation algorithms whose gain sequence is decreasing to zero. Our focus is on the estimation of the parameters in the resulting actual law of motion. For a special case we show that the ordinary least squares estimator is consistent.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. 10-077/4

Classification
Wirtschaft
Estimation: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
Expectations; Speculations
Subject
Adaptive learning
forecast feedback
stochastic approximation
linear regression with stochastic regressors
consistency
Lernen
Rationales Verhalten
Prognoseverfahren
Regression
Stochastischer Prozess
Agentenbasierte Modellierung
Theorie

Event
Geistige Schöpfung
(who)
Christopeit, Norbert
Massmann, Michael
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2010

Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Christopeit, Norbert
  • Massmann, Michael
  • Tinbergen Institute

Time of origin

  • 2010

Other Objects (12)