On the feller–dynkin and the martingale property of one-dimensional diffusions

Abstract: We show that a one-dimensional regular continuous Markov process X with scale function s is a Feller–Dynkin process precisely if the space transformed process s(X) is a martingale when stopped at the boundaries of its state space. As a consequence, the Feller–Dynkin and the martingale property are equivalent for regular diffusions on natural scale with open state space. By means of a counterexample, we also show that this equivalence fails for multidimensional diffusions. Moreover, for Itô diffusions we discuss relations to Cauchy problems

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Electronic communications in probability. - 28 (2023) , 1-15, ISSN: 1083-589X

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2024
Creator

DOI
10.1214/23-ecp524
URN
urn:nbn:de:bsz:25-freidok-2536436
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:52 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2024

Other Objects (12)