On the feller–dynkin and the martingale property of one-dimensional diffusions
Abstract: We show that a one-dimensional regular continuous Markov process X with scale function s is a Feller–Dynkin process precisely if the space transformed process s(X) is a martingale when stopped at the boundaries of its state space. As a consequence, the Feller–Dynkin and the martingale property are equivalent for regular diffusions on natural scale with open state space. By means of a counterexample, we also show that this equivalence fails for multidimensional diffusions. Moreover, for Itô diffusions we discuss relations to Cauchy problems
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Electronic communications in probability. - 28 (2023) , 1-15, ISSN: 1083-589X
- DOI
-
10.1214/23-ecp524
- URN
-
urn:nbn:de:bsz:25-freidok-2536436
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
25.03.2025, 13:52 MEZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Criens, David
- Universität
Entstanden
- 2024