An Artificial Neural Network based Solution Scheme to periodic Homogenization

Abstract: Artificial neural networks (ANNs) have aroused research's and industry's interest due to their excellent approximation properties and are broadly used nowadays in the field of machine learning. In the present contribution, ANNs are used for finding solutions of periodic homogenization problems. The construction of ANN‐based trial functions that satisfy the given boundary conditions on the microscale allows for the unconstrained optimization of a global energy potential. Goal of the present approach is a memory efficient solution scheme as ANNs are known to fit complicated functions with a relatively small number of internal parameters. The method is tested for a three‐dimensional example using a global trial function and is qualitatively compared to a fast Fourier transform (FFT) based simulation.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
An Artificial Neural Network based Solution Scheme to periodic Homogenization ; volume:19 ; number:1 ; year:2019 ; extent:2
Proceedings in applied mathematics and mechanics ; 19, Heft 1 (2019) (gesamt 2)

Creator
Göküzüm, Felix Selim
Nguyen, Lu Trong Khiem
Keip, Marc-André

DOI
10.1002/pamm.201900271
URN
urn:nbn:de:101:1-2022072207303132372434
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:31 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Göküzüm, Felix Selim
  • Nguyen, Lu Trong Khiem
  • Keip, Marc-André

Other Objects (12)