Application of Artificial Neural Network accelerating a porous media FE 2 homogenization scheme

Abstract: Multiscale techniques, which include information of discrete lower level substructures of real material, are state of the art methods of current researches. This technology has the advantage of achieving more accurate results, by imaging the real geometry information from the microscopic level. In addition, it provides the opportunity to design a certain microstructure which fulfills the specific requirements at a macroscopic level. The drawback lies on the increasing computational effort. Simulation of a 3‐dimensional, nonlinear, time‐dependent, coupled, two‐scale problem with industrial relevance, could cause unacceptable runtimes. There are several strategies to overcome this disadvantage, such as parallelization, analytical derivatives and various surrogate models. This contribution shows the feasibility of storing microstructural information in an Artificial Neural Network, in order to reduce computational runtime.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Application of Artificial Neural Network accelerating a porous media FE 2 homogenization scheme ; volume:19 ; number:1 ; year:2019 ; extent:2
Proceedings in applied mathematics and mechanics ; 19, Heft 1 (2019) (gesamt 2)

Urheber
Bartel, Florian
Ricken, Tim
Schröder, Jörg
Bluhm, Joachim

DOI
10.1002/pamm.201900381
URN
urn:nbn:de:101:1-2022072207410095827917
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:37 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Bartel, Florian
  • Ricken, Tim
  • Schröder, Jörg
  • Bluhm, Joachim

Ähnliche Objekte (12)