Arbeitspapier
Nonparametric learning rules from bandit experiments: The eyes have it!
We estimate nonparametric learning rules using data from dynamic two-armed bandit (probabilistic reversal learning) experiments, supplemented with auxiliary eye-movement measures of subjects' beliefs. We apply recent econometric developments in the estimation of dynamic models. The direct estimation of learning rules differs from the usual modus operandi of the experimental literature. The estimated choice probabilities and learning rules from our nonparametric models have some distinctive features; notably that subjects tend to update in a non-smooth manner following positive exploitative choices (those made in accordance with current beliefs). Simulation results show how the estimated nonparametric learning rules fit aspects of subjects' observed choice sequences better than lternative parameterized learning rules from Bayesian and reinforcement learning models.
- Language
-
Englisch
- Bibliographic citation
-
Series: cemmap working paper ; No. CWP15/10
- Classification
-
Wirtschaft
- Subject
-
Schätztheorie
Lernen
Nichtparametrisches Verfahren
Simulation
Dynamisches Modell
- Event
-
Geistige Schöpfung
- (who)
-
Hu, Yingyao
Kayaba, Yutaka
Shum, Matt
- Event
-
Veröffentlichung
- (who)
-
Centre for Microdata Methods and Practice (cemmap)
- (where)
-
London
- (when)
-
2010
- DOI
-
doi:10.1920/wp.cem.2010.1510
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Hu, Yingyao
- Kayaba, Yutaka
- Shum, Matt
- Centre for Microdata Methods and Practice (cemmap)
Time of origin
- 2010