Arbeitspapier

Nonparametric learning rules from bandit experiments: The eyes have it!

We estimate nonparametric learning rules using data from dynamic two-armed bandit (probabilistic reversal learning) experiments, supplemented with auxiliary eye-movement measures of subjects' beliefs. We apply recent econometric developments in the estimation of dynamic models. The direct estimation of learning rules differs from the usual modus operandi of the experimental literature. The estimated choice probabilities and learning rules from our nonparametric models have some distinctive features; notably that subjects tend to update in a non-smooth manner following positive exploitative choices (those made in accordance with current beliefs). Simulation results show how the estimated nonparametric learning rules fit aspects of subjects' observed choice sequences better than lternative parameterized learning rules from Bayesian and reinforcement learning models.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP15/10

Klassifikation
Wirtschaft
Thema
Schätztheorie
Lernen
Nichtparametrisches Verfahren
Simulation
Dynamisches Modell

Ereignis
Geistige Schöpfung
(wer)
Hu, Yingyao
Kayaba, Yutaka
Shum, Matt
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2010

DOI
doi:10.1920/wp.cem.2010.1510
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hu, Yingyao
  • Kayaba, Yutaka
  • Shum, Matt
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2010

Ähnliche Objekte (12)