Arbeitspapier
Nonparametric learning rules from bandit experiments: The eyes have it!
How do people learn? We assess, in a distribution-free manner, subjects' learning and choice rules in dynamic two-armed bandit (probabilistic reversal learning) experiments. To aid in identification and estimation, we use auxiliary measures of subjects' beliefs, in the form of their eye-movements during the experiment. Our estimated choice probabilities and learning rules have some distinctive features; notably that subjects tend to update in a non-smooth manner following choices made in accordance with current beliefs. Moreover, the beliefs implied by our nonparametric learning rules are closer to those from a (non-Bayesian) reinforcement learning model, than a Bayesian learning model.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 560
- Klassifikation
-
Wirtschaft
Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
Design of Experiments: Laboratory, Individual
Semiparametric and Nonparametric Methods: General
- Thema
-
Learning
experiments
eye-tracking
Bayesian vs. non-Bayesian learning
nonparametric estimation
Schätztheorie
Lernen
Nichtparametrisches Verfahren
Simulation
Dynamisches Modell
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Hu, Yingyao
Kayaba, Yutaka
Shum, Matt
- Ereignis
-
Veröffentlichung
- (wer)
-
The Johns Hopkins University, Department of Economics
- (wo)
-
Baltimore, MD
- (wann)
-
2010
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Hu, Yingyao
- Kayaba, Yutaka
- Shum, Matt
- The Johns Hopkins University, Department of Economics
Entstanden
- 2010