Konferenzbeitrag
Generalization Methods for In-Domain and Cross-Domain Opinion Holder Extraction
In this paper, we compare three different generalization methods for in-domain and cross-domain opinion holder extraction being simple unsupervised word clustering, an induction method inspired by distant supervision and the usage of lexical resources. The generalization methods are incorporated into diverse classifiers. We show that generalization causes significant improvements and that the impact of improvement depends on the type of classifier and on how much training and test data differ from each other. We also address the less common case of opinion holders being realized in patient position and suggest approaches including a novel (linguistically-informed) extraction method how to detect those opinion holders without labeled training data as standard datasets contain too few instances of this type.
- Sprache
-
Englisch
- Thema
-
Computerlinguistik
Information Extraction
Natürliche Sprache
Maschinelles Lernen
Meinung
Sprache
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Wiegand, Michael
Klakow, Dietrich
- Ereignis
-
Veröffentlichung
- (wer)
-
Stroudsburg, PA : Association for Computational Linguistics
- (wann)
-
2019-01-23
- URN
-
urn:nbn:de:bsz:mh39-84378
- Letzte Aktualisierung
-
06.03.2025, 09:00 MEZ
Datenpartner
Leibniz-Institut für Deutsche Sprache - Bibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Konferenzbeitrag
Beteiligte
- Wiegand, Michael
- Klakow, Dietrich
- Stroudsburg, PA : Association for Computational Linguistics
Entstanden
- 2019-01-23