Konferenzbeitrag

Convolution Kernels for Opinion Holder Extraction

Opinion holder extraction is one of the important subtasks in sentiment analysis. The effective detection of an opinion holder depends on the consideration of various cues on various levels of representation, though they are hard to formulate explicitly as features. In this work, we propose to use convolution kernels for that task which identify meaningful fragments of sequences or trees by themselves. We not only investigate how different levels of information can be effectively combined in different kernels but also examine how the scope of these kernels should be chosen. In general relation extraction, the two candidate entities thought to be involved in a relation are commonly chosen to be the boundaries of sequences and trees. The definition of boundaries in opinion holder extraction, however, is less straightforward since there might be several expressions beside the candidate opinion holder to be eligible for being a boundary.

Convolution Kernels for Opinion Holder Extraction

Urheber*in: Wiegand, Michael; Klakow, Dietrich

Urheberrechtsschutz

0
/
0

Sprache
Englisch

Thema
Computerlinguistik
Information Extraction
Meinung
Natürliche Sprache
Maschinelles Lernen
Sprache

Ereignis
Geistige Schöpfung
(wer)
Wiegand, Michael
Klakow, Dietrich
Ereignis
Veröffentlichung
(wer)
Stroudsburg, PA : Association for Computational Linguistics
(wann)
2019-01-22

URN
urn:nbn:de:bsz:mh39-84345
Letzte Aktualisierung
06.03.2025, 09:00 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Leibniz-Institut für Deutsche Sprache - Bibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Konferenzbeitrag

Beteiligte

  • Wiegand, Michael
  • Klakow, Dietrich
  • Stroudsburg, PA : Association for Computational Linguistics

Entstanden

  • 2019-01-22

Ähnliche Objekte (12)