Konferenzbeitrag
Data-driven Knowledge Extraction for the Food Domain
In this paper, we examine methods to automatically extract domain-specific knowledge from the food domain from unlabeled natural language text. We employ different extraction methods ranging from surface patterns to co-occurrence measures applied on different parts of a document. We show that the effectiveness of a particular method depends very much on the relation type considered and that there is no single method that works equally well for every relation type. We also examine a combination of extraction methods and also consider relationships between different relation types. The extraction methods are applied both on a domain-specific corpus and the domain-independent factual knowledge base Wikipedia. Moreover, we examine an open-domain lexical ontology for suitability.
- Language
-
Englisch
- Subject
-
Information Extraction
Computerlinguistik
Korpus <Linguistik>
Empirische Linguistik
Lebensmittel
Sprache
- Event
-
Geistige Schöpfung
- (who)
-
Wiegand, Michael
Roth, Benjamin
Klakow, Dietrich
- Event
-
Veröffentlichung
- (who)
-
Wien : Österreichische Gesellschaft für Artificial Intelligence
- (when)
-
2019-01-28
- URN
-
urn:nbn:de:bsz:mh39-84529
- Last update
-
06.03.2025, 9:00 AM CET
Data provider
Leibniz-Institut für Deutsche Sprache - Bibliothek. If you have any questions about the object, please contact the data provider.
Object type
- Konferenzbeitrag
Associated
- Wiegand, Michael
- Roth, Benjamin
- Klakow, Dietrich
- Wien : Österreichische Gesellschaft für Artificial Intelligence
Time of origin
- 2019-01-28