Arbeitspapier
Double-Length Artificial Regressions
Artificial linear regressions often provide a convenient way to calculate test statistics and estimate covariance matrices. This paper discusses one family of these regressions, called "double-length" because the number of observations in the artificial regression is twice the actual number of observations. These double-length regressions can be useful in a wide variety of situations. They are easy to calculate, and seem to have good properties when applied to samples of modest size. We first discuss how they are related to Gauss-Newton and squared-residuals regressions for nonlinear models, and then show how they may be used to test for functional form and other applications.
- Sprache
-
Englisch
- Erschienen in
-
Series: Queen's Economics Department Working Paper ; No. 691
- Klassifikation
-
Wirtschaft
- Thema
-
artificial regression
double-length regression
DLR
Gauss-Newton regression
functional form
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Davidson, Russell
MacKinnon, James G.
- Ereignis
-
Veröffentlichung
- (wer)
-
Queen's University, Department of Economics
- (wo)
-
Kingston (Ontario)
- (wann)
-
1987
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Davidson, Russell
- MacKinnon, James G.
- Queen's University, Department of Economics
Entstanden
- 1987