Arbeitspapier
Artificial regressions
Associated with every popular nonlinear estimation method is at least one 'artificial' linear regression. We define an artificial regression in terms of three conditions that it must satisfy. Then we show how artificial regressions can be useful for numerical optimization, testing hypotheses, and computing parameter estimates. Several existing artificial regressions are discussed and are shown to satisfy the defining conditions, and a new artificial regression for regression models with heteroskedasticity of unknown form is introduced.
- Language
-
Englisch
- Bibliographic citation
-
Series: Queen's Economics Department Working Paper ; No. 1038
- Classification
-
Wirtschaft
Hypothesis Testing: General
Statistical Simulation Methods: General
- Subject
-
artificial regression
LM test
specification test
Gauss-Newton regression
one-step estimation
OPG regression
double-length regression
binary response model
- Event
-
Geistige Schöpfung
- (who)
-
Davidson, Russell
MacKinnon, James
- Event
-
Veröffentlichung
- (who)
-
Queen's University, Department of Economics
- (where)
-
Kingston (Ontario)
- (when)
-
2001
- Handle
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Davidson, Russell
- MacKinnon, James
- Queen's University, Department of Economics
Time of origin
- 2001