Arbeitspapier

Artificial regressions

Associated with every popular nonlinear estimation method is at least one 'artificial' linear regression. We define an artificial regression in terms of three conditions that it must satisfy. Then we show how artificial regressions can be useful for numerical optimization, testing hypotheses, and computing parameter estimates. Several existing artificial regressions are discussed and are shown to satisfy the defining conditions, and a new artificial regression for regression models with heteroskedasticity of unknown form is introduced.

Language
Englisch

Bibliographic citation
Series: Queen's Economics Department Working Paper ; No. 1038

Classification
Wirtschaft
Hypothesis Testing: General
Statistical Simulation Methods: General
Subject
artificial regression
LM test
specification test
Gauss-Newton regression
one-step estimation
OPG regression
double-length regression
binary response model

Event
Geistige Schöpfung
(who)
Davidson, Russell
MacKinnon, James
Event
Veröffentlichung
(who)
Queen's University, Department of Economics
(where)
Kingston (Ontario)
(when)
2001

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Davidson, Russell
  • MacKinnon, James
  • Queen's University, Department of Economics

Time of origin

  • 2001

Other Objects (12)