Artikel

Do we need stochastic volatility and generalised autoregressive conditional heteroscedasticity? Comparing squared end-of-day returns on ftse

The paper examines the relative performance of Stochastic Volatility (SV) and Generalised Autoregressive Conditional Heteroscedasticity (GARCH) (1,1) models fitted to ten years of daily data for FTSE. As a benchmark, we used the realized volatility (RV) of FTSE sampled at 5 min intervals taken from the Oxford Man Realised Library. Both models demonstrated comparable performance and were correlated to a similar extent with RV estimates when measured by ordinary least squares (OLS). However, a crude variant of Corsi's (2009) Heterogeneous Autoregressive (HAR) model, applied to squared demeaned daily returns on FTSE, appeared to predict the daily RV of FTSE better than either of the two models. Quantile regressions suggest that all three methods capture tail behaviour similarly and adequately. This leads to the question of whether we need either of the two standard volatility models if the simple expedient of using lagged squared demeaned daily returns provides a better RV predictor, at least in the context of the sample.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 8 ; Year: 2020 ; Issue: 1 ; Pages: 1-20 ; Basel: MDPI

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Asset Pricing; Trading Volume; Bond Interest Rates
Thema
demeaned daily squared returns
FTSE
GARCH (1,1)
HAR model
RV 5 min
stochastic volatility

Ereignis
Geistige Schöpfung
(wer)
Allen, David E.
McAleer, Michael
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2020

DOI
doi:10.3390/risks8010012
Handle
Letzte Aktualisierung
10.03.2025, 11:46 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Allen, David E.
  • McAleer, Michael
  • MDPI

Entstanden

  • 2020

Ähnliche Objekte (12)