Artikel

Exchange rate forecasting with advanced machine learning methods

Historically, exchange rate forecasting models have exhibited poor out-of-sample performances and were inferior to the random walk model. Monthly panel data from 1973 to 2014 for ten currency pairs of OECD countries are used to make out-of sample forecasts with artificial neural networks and XGBoost models. Most approaches show significant and substantial predictive power in directional forecasts. Moreover, the evidence suggests that information regarding prediction timing is a key component in the forecasting performance.

Language
Englisch

Bibliographic citation
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 15 ; Year: 2022 ; Issue: 1 ; Pages: 1-17 ; Basel: MDPI

Classification
Wirtschaft
Macroeconomics and Monetary Economics: General
International Economics: General
Subject
machine learning
exchange rate forecasting
fundamentals

Event
Geistige Schöpfung
(who)
Pfahler, Jonathan Felix
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2022

DOI
doi:10.3390/jrfm15010002
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Pfahler, Jonathan Felix
  • MDPI

Time of origin

  • 2022

Other Objects (12)