Artikel

Application of machine learning to mortality modeling and forecasting

Estimation of future mortality rates still plays a central role among life insurers in pricing their products and managing longevity risk. In the literature on mortality modeling, a wide number of stochastic models have been proposed, most of them forecasting future mortality rates by extrapolating one or more latent factors. The abundance of proposed models shows that forecasting future mortality from historical trends is non-trivial. Following the idea proposed in Deprez et al. (2017), we use machine learning algorithms, able to catch patterns that are not commonly identifiable, to calibrate a parameter (the machine learning estimator), improving the goodness of fit of standard stochastic mortality models. The machine learning estimator is then forecasted according to the Lee-Carter framework, allowing one to obtain a higher forecasting quality of the standard stochastic models. Out-of sample forecasts are provided to verify the model accuracy.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 7 ; Year: 2019 ; Issue: 1 ; Pages: 1-19 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
mortality
forecasting
machine learning
Lee-Carter model

Ereignis
Geistige Schöpfung
(wer)
Levantesi, Susanna
Pizzorusso, Virginia
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2019

DOI
doi:10.3390/risks7010026
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Levantesi, Susanna
  • Pizzorusso, Virginia
  • MDPI

Entstanden

  • 2019

Ähnliche Objekte (12)