Asymptotic stability of an epidemiological fractional reaction-diffusion model

Abstract: The aim of this article is to study the known susceptible-infectious (SI) epidemic model using fractional order reaction-diffusion fractional partial differential equations [FPDEs] in order to better describe the dynamics of a reaction-diffusion SI with a nonlinear incidence rate describing the infection dynamics of the HIV/AIDS virus. We initially examined the nonnegativity, global existence, and boundedness for solutions of the proposed system. After determining that the proposed model has two steady states, we derived sufficient conditions for the global and local asymptotic stability of the equilibrium of the proposed system and their relationship to basic reproduction in the case of fractional ordinary differential equations and FPDEs by analyzing the eigenvalues and using the appropriately chosen Lyapunov function. Finally, we used numerical examples to illustrate our theoretical results.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Asymptotic stability of an epidemiological fractional reaction-diffusion model ; volume:56 ; number:1 ; year:2023 ; extent:27
Demonstratio mathematica ; 56, Heft 1 (2023) (gesamt 27)

Urheber
Djebara, Lamia
Abdelmalek, Salem
Bendoukha, Samir

DOI
10.1515/dema-2022-0224
URN
urn:nbn:de:101:1-2023061514080910933779
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:48 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Djebara, Lamia
  • Abdelmalek, Salem
  • Bendoukha, Samir

Ähnliche Objekte (12)