Asymptotic stability of an epidemiological fractional reaction-diffusion model

Abstract: The aim of this article is to study the known susceptible-infectious (SI) epidemic model using fractional order reaction-diffusion fractional partial differential equations [FPDEs] in order to better describe the dynamics of a reaction-diffusion SI with a nonlinear incidence rate describing the infection dynamics of the HIV/AIDS virus. We initially examined the nonnegativity, global existence, and boundedness for solutions of the proposed system. After determining that the proposed model has two steady states, we derived sufficient conditions for the global and local asymptotic stability of the equilibrium of the proposed system and their relationship to basic reproduction in the case of fractional ordinary differential equations and FPDEs by analyzing the eigenvalues and using the appropriately chosen Lyapunov function. Finally, we used numerical examples to illustrate our theoretical results.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Asymptotic stability of an epidemiological fractional reaction-diffusion model ; volume:56 ; number:1 ; year:2023 ; extent:27
Demonstratio mathematica ; 56, Heft 1 (2023) (gesamt 27)

Creator
Djebara, Lamia
Abdelmalek, Salem
Bendoukha, Samir

DOI
10.1515/dema-2022-0224
URN
urn:nbn:de:101:1-2023061514080910933779
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:48 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Djebara, Lamia
  • Abdelmalek, Salem
  • Bendoukha, Samir

Other Objects (12)