Arbeitspapier
Semiparametric estimation with generated covariates
In this paper, we study a general class of semiparametric optimization estimators of a vector-valued parameter. The criterion function depends on two types of infinite-dimensional nuisance parameters: a conditional expectation function that has been estimated nonparametrically using generated covariates, and another estimated function that is used to compute the generated covariates in the first place. We study the asymptotic properties of estimators in this class, which is a nonstandard problem due to the presence of generated covariates. We give conditions under which estimators are root-n consistent and asymptotically normal, and derive a general formula for the asymptotic variance.
- Language
-
Englisch
- Bibliographic citation
-
Series: SFB 649 Discussion Paper ; No. 2011-064
- Classification
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
- Subject
-
semiparametric estimation
generated covariates
profiling
propensity score
Nichtparametrisches Verfahren
Schätztheorie
Korrelation
Theorie
- Event
-
Geistige Schöpfung
- (who)
-
Mammen, Enno
Rothe, Christoph
Schienle, Melanie
- Event
-
Veröffentlichung
- (who)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (where)
-
Berlin
- (when)
-
2011
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Mammen, Enno
- Rothe, Christoph
- Schienle, Melanie
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Time of origin
- 2011