Arbeitspapier

Semiparametric estimation with generated covariates

In this paper, we study a general class of semiparametric optimization estimators of a vector-valued parameter. The criterion function depends on two types of infinite-dimensional nuisance parameters: a conditional expectation function that has been estimated nonparametrically using generated covariates, and another estimated function that is used to compute the generated covariates in the first place. We study the asymptotic properties of estimators in this class, which is a nonstandard problem due to the presence of generated covariates. We give conditions under which estimators are root-n consistent and asymptotically normal, and derive a general formula for the asymptotic variance.

Language
Englisch

Bibliographic citation
Series: SFB 649 Discussion Paper ; No. 2011-064

Classification
Wirtschaft
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
Subject
semiparametric estimation
generated covariates
profiling
propensity score
Nichtparametrisches Verfahren
Schätztheorie
Korrelation
Theorie

Event
Geistige Schöpfung
(who)
Mammen, Enno
Rothe, Christoph
Schienle, Melanie
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(where)
Berlin
(when)
2011

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Mammen, Enno
  • Rothe, Christoph
  • Schienle, Melanie
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Time of origin

  • 2011

Other Objects (12)