Arbeitspapier

Generated covariates in nonparametric estimation: A short review

In many applications, covariates are not observed but have to be estimated from data. We outline some regression-type models where such a situation occurs and discuss estimation of the regression function in this context.We review theoretical results on how asymptotic properties of nonparametric estimators differ in the presence of generated covariates from the standard case where all covariates are observed. These results also extend to settings where the focus of interest is on average functionals of the regression function.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2012-042

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
Thema
Nonparametric estimation
generated covariates
Varianzanalyse
Schätztheorie
Nichtparametrisches Verfahren
Theorie

Ereignis
Geistige Schöpfung
(wer)
Mammen, Enno
Rothe, Christoph
Schienle, Melanie
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2012

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Mammen, Enno
  • Rothe, Christoph
  • Schienle, Melanie
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2012

Ähnliche Objekte (12)