Arbeitspapier

Generated covariates in nonparametric estimation: A short review

In many applications, covariates are not observed but have to be estimated from data. We outline some regression-type models where such a situation occurs and discuss estimation of the regression function in this context.We review theoretical results on how asymptotic properties of nonparametric estimators differ in the presence of generated covariates from the standard case where all covariates are observed. These results also extend to settings where the focus of interest is on average functionals of the regression function.

Language
Englisch

Bibliographic citation
Series: SFB 649 Discussion Paper ; No. 2012-042

Classification
Wirtschaft
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
Subject
Nonparametric estimation
generated covariates
Varianzanalyse
Schätztheorie
Nichtparametrisches Verfahren
Theorie

Event
Geistige Schöpfung
(who)
Mammen, Enno
Rothe, Christoph
Schienle, Melanie
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(where)
Berlin
(when)
2012

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Mammen, Enno
  • Rothe, Christoph
  • Schienle, Melanie
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Time of origin

  • 2012

Other Objects (12)