Arbeitspapier
Generated covariates in nonparametric estimation: A short review
In many applications, covariates are not observed but have to be estimated from data. We outline some regression-type models where such a situation occurs and discuss estimation of the regression function in this context.We review theoretical results on how asymptotic properties of nonparametric estimators differ in the presence of generated covariates from the standard case where all covariates are observed. These results also extend to settings where the focus of interest is on average functionals of the regression function.
- Language
-
Englisch
- Bibliographic citation
-
Series: SFB 649 Discussion Paper ; No. 2012-042
- Classification
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
- Subject
-
Nonparametric estimation
generated covariates
Varianzanalyse
Schätztheorie
Nichtparametrisches Verfahren
Theorie
- Event
-
Geistige Schöpfung
- (who)
-
Mammen, Enno
Rothe, Christoph
Schienle, Melanie
- Event
-
Veröffentlichung
- (who)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (where)
-
Berlin
- (when)
-
2012
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Mammen, Enno
- Rothe, Christoph
- Schienle, Melanie
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Time of origin
- 2012