Arbeitspapier

Nonparametric regression with nonparametrically generated covariates

We analyze the properties of non- and semiparametric estimation procedures involving nonparametric regression with generated covariates. Such estimators appear in numerous econometric applications, including nonparametric estimation of simultaneous equation models, sample selection models, treatment effect models, and censored regression models, but so far there seems to be no unified theory to establish their statistical properties. Our paper provides such results, allowing to establish asymptotic properties like rates of consistency or asymptotic normality for a wide range of semi- and nonparametric estimators. We also show how to account for the presence of nonparametrically generated regressors when computing standard errors.

Language
Englisch

Bibliographic citation
Series: SFB 649 Discussion Paper ; No. 2010-059

Classification
Wirtschaft
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
Subject
empirical process
propensity score
control variable methods
semiparametric estimation
Regression
Nichtparametrisches Verfahren
Varianzanalyse
Theorie

Event
Geistige Schöpfung
(who)
Mammen, Enno
Rothe, Christoph
Schienle, Melanie
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(where)
Berlin
(when)
2010

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Mammen, Enno
  • Rothe, Christoph
  • Schienle, Melanie
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Time of origin

  • 2010

Other Objects (12)