Arbeitspapier

Nonparametric Regression on Latent Covariates with an Application to Semiparametric GARCH-in-Mean Models

We consider time series models in which the conditional mean of the response variable given the past depends on latent covariates. We assume that the covariates can be estimated consistently and use an iterative nonparametric kernel smoothing procedure for estimating the conditional mean function. The covariates are assumed to depend (non)parametrically on past values of the covariates and of the observations. Our procedure is based on iterative fits of the covariates and nonparametric kernel smoothing of the conditional mean function. An asymptotic theory for the resulting kernel estimator is developed and the estimator is used for testing parametric specifications of the mean function. Our leading example is a semiparametric class of GARCH-in-Mean models. In this set-up our procedure provides a formal framework for testing economic theories that postulate functional relations between macroeconomic or financial variables and their conditional second moments. We illustrate the usefulness of the methodology by testing the linear risk-return relation predicted by the ICAPM.

Sprache
Englisch

Erschienen in
Series: Discussion Paper Series ; No. 473

Klassifikation
Wirtschaft
Hypothesis Testing: General
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Evaluation, Validation, and Selection
Asset Pricing; Trading Volume; Bond Interest Rates
Thema
Specification test
GARCH-M
semiparametric regression
risk premium
ICAPM
Modellierung
Statistischer Test
ARCH-Modell
Nichtparametrisches Verfahren
Korrelation
Theorie
Schätzung
CAPM
Risikoprämie

Ereignis
Geistige Schöpfung
(wer)
Conrad, Christian
Mammen, Enno
Ereignis
Veröffentlichung
(wer)
University of Heidelberg, Department of Economics
(wo)
Heidelberg
(wann)
2008

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Conrad, Christian
  • Mammen, Enno
  • University of Heidelberg, Department of Economics

Entstanden

  • 2008

Ähnliche Objekte (12)