Arbeitspapier

The stochastic fluctuation of the quantile regression curve

Let (X1, Y1), . . ., (Xn, Yn) be i.i.d. rvs and let l(x) be the unknown p-quantile regression curve of Y on X. A quantile-smoother ln(x) is a localised, nonlinear estimator of l(x). The strong uniform consistency rate is established under general conditions. In many applications it is necessary to know the stochastic fluctuation of the process {ln(x) – l(x)}. Using strong approximations of the empirical process and extreme value theory allows us to consider the asymptotic maximal deviation sup06x61 |ln(x)?l(x)|. The derived result helps in the construction of a uniform confidence band for the quantile curve l(x). This confidence band can be applied as a model check, e.g. in econometrics. An application considers a labour market discrimination effect.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2008,027

Klassifikation
Wirtschaft
Mathematical and Quantitative Methods: General
Semiparametric and Nonparametric Methods: General
Labor Economics: General
Wage Level and Structure; Wage Differentials
Thema
Quantile Regression , Consistency Rate , Confidence Band , Check Function , Kernel Smoothing , Nonparametric Fitting
Regression
Statistischer Test
Stochastischer Prozess
Theorie
Schätzung
Lohn
Lebensalter
Arbeitsmarktdiskriminierung
USA

Ereignis
Geistige Schöpfung
(wer)
Härdle, Wolfgang Karl
Song, Song
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2008

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Härdle, Wolfgang Karl
  • Song, Song
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2008

Ähnliche Objekte (12)