Adaptation of Dynamic Data‐Driven Models for Real‐Time Applications: From Simulated to Real Batch Distillation Trajectories by Transfer Learning

Abstract: In the absence of knowledge about challenging dynamic phenomena involved in batch distillation processes, e.g., complex flow regimes or appearing and vanishing phases, generation of accurate mechanistic models is limited. Real plant data containing this missing information is scarce, also limiting the use of data‐driven models. To exploit the information contained in measurement data and a related but inaccurate first‐principles model, transfer learning from simulated to real plant data is analyzed. For the use case of a batch distillation column, the adapted model provides more accurate predictions than a data‐driven model trained exclusively on scarce real plant data or simulated data. Its enhanced convergence and lower computational cost make it suitable for optimization in real‐time.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Adaptation of Dynamic Data‐Driven Models for Real‐Time Applications: From Simulated to Real Batch Distillation Trajectories by Transfer Learning ; day:29 ; month:03 ; year:2023 ; extent:10
Chemie - Ingenieur - Technik ; (29.03.2023) (gesamt 10)

Urheber
Rihm, Gerardo Brand
Schueler, Merlin
Nentwich, Corina
Esche, Erik
Repke, Jens-Uwe

DOI
10.1002/cite.202200228
URN
urn:nbn:de:101:1-2023033015113306435492
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:59 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)