Arbeitspapier
PLS dimension reduction for classification of microarray data
PLS dimension reduction is known to give good prediction accuracy in the context of classification with high-dimensional microarray data. In this paper, PLS is compared with some of the best state-of-the-art classification methods. In addition, a simple procedure to choose the number of components is suggested. The connection between PLS dimension reduction and gene selection is examined and a property of the first PLS component for binary classification is proven. PLS can also be used as a visualization tool for high-dimensional data in the classification framework. The whole study is based on 9 real microarray cancer data sets.
- Sprache
-
Englisch
- Erschienen in
-
Series: Discussion Paper ; No. 392
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Boulesteix, Anne-Laure
- Ereignis
-
Veröffentlichung
- (wer)
-
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
- (wo)
-
München
- (wann)
-
2004
- DOI
-
doi:10.5282/ubm/epub.1762
- Handle
- URN
-
urn:nbn:de:bvb:19-epub-1762-7
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Boulesteix, Anne-Laure
- Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
Entstanden
- 2004