Arbeitspapier

Optimal vs. classical linear dimension reduction

We describe a computer intensive method for linear dimension reduction which minimizes the classification error directly. Simulated annealing Bohachevsky et al (1986) is used to solve this problem. The classification error is determined by an exact integration. We avoid distance or scatter measures which are only surrogates to circumvent the classification error. Simulations in two dimensions and analytical approximations demonstrate the superiority of optimal classification opposite to the classical procedures. We compare our procedure to the well-known canonical discriminant analysis (homoscedastic case) as described in Mc Lachlan (1992) and to a method by Young et al (1986) for the heteroscedastic case. Special emphasis is put on the case when the distance based methods collapse. The computer intensive algorithm always achieves minimal classification error.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 1998,12

Event
Geistige Schöpfung
(who)
Röhl, Michael C.
Weihs, Claus
Event
Veröffentlichung
(who)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
1998

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Röhl, Michael C.
  • Weihs, Claus
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 1998

Other Objects (12)