Generalized bounds for convex multistage stochastic programs

This book investigates convex multistage stochastic programs whose objective and constraint functions exhibit a generalized nonconvex dependence on the random parameters. Although the classical Jensen and Edmundson-Madansky type bounds or its extensions are generally not available for such problems, tight bounds can systematically be constructed under mild regularity conditions. A nice primal-dual symmetry property is revealed when the proposed bounding method is applied to linear stochastic programs. After having developed the theoretical concepts, exemplary real-life applications are studied. It is shown how market power, lognormal stochastic processes, and risk-aversion can be properly handled in a stochastic programming framework. Numerical experiments show that the relative gap between the bounds can be reduced to a few percent without exploding the problem size.

Location
Deutsche Nationalbibliothek Frankfurt am Main
ISBN
9783540225409
3540225404
Dimensions
24 cm
Extent
XI, 190 S.
Language
Englisch
Notes
graph. Darst.
Literaturverz. S. 175 - 181

Bibliographic citation
Lecture notes in economics and mathematical systems ; Vol. 548

Classification
Mathematik
Wirtschaft
Keyword
Stochastische Optimierung
Approximation
Regularisierung
Numerisches Verfahren

Event
Veröffentlichung
(where)
Berlin, Heidelberg, New York
(who)
Springer
(when)
2005
Creator
Kuhn, Daniel

Table of contents
Rights
Bei diesem Objekt liegt nur das Inhaltsverzeichnis digital vor. Der Zugriff darauf ist unbeschränkt möglich.
Last update
11.03.2025, 12:28 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Kuhn, Daniel
  • Springer

Time of origin

  • 2005

Other Objects (12)