Arbeitspapier

Forecasting GDP growth from outer space

We evaluate the usefulness of satellite-based data on night-time lights for forecasting GDP growth across a global sample of countries, proposing innovative location-based indicators to extract new predictive information from the lights data. Our findings are generally favorable to the use of night lights data to improve the accuracy of model-based forecasts. We also find a substantial degree of heterogeneity across countries in the relationship between lights and economic activity: individually-estimated models tend to outperform panel specifications. Key factors underlying the night lights performance include the country's size and income level, logistics infrastructure, and the quality of national statistics.

Sprache
Englisch

Erschienen in
Series: Economics Working Paper Series ; No. 2020/02

Klassifikation
Wirtschaft
Large Data Sets: Modeling and Analysis
Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Size and Spatial Distributions of Regional Economic Activity
Thema
night lights
remote sensing
big data
business cycles
leading indicators

Ereignis
Geistige Schöpfung
(wer)
Galimberti, Jaqueson K.
Ereignis
Veröffentlichung
(wer)
Auckland University of Technology (AUT), Faculty of Business, Economics and Law
(wo)
Auckland
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Galimberti, Jaqueson K.
  • Auckland University of Technology (AUT), Faculty of Business, Economics and Law

Entstanden

  • 2020

Ähnliche Objekte (12)