MEMS pressure sensors with novel TSV design for extreme temperature environments
Abstract: This study introduces a manufacturing process based on industrial MEMS technology, enabling the production of diverse sensor designs customized for a wide range of absolute pressure measurements. Using monocrystalline silicon as the structural material minimizes thermal stresses and eliminates temperature-dependent semiconductor effects, as silicon functions solely as a mechanical material. Integrating a eutectic bonding process in the sensor fabrication allows for a reliable operation at temperatures up to 350 °C. The capacitive sensor electrodes are enclosed within a silicon-based Faraday cage, ensuring effective shielding against external electrostatic interference. An innovative Through-Silicon Via (TSV) design, sealed using gold–gold (Au-Au) diffusion and gold–silicon (Au-Si) eutectic bonding, further enhances the mechanical and thermal stability of the sensors, even under high-temperature conditions. The unfilled TSV structure mitigates mechanical stress from thermal expansion. The sensors exhibited excellent performance, achieving a linearity of 99.994%, a thermal drift of −0.0164% FS (full scale)/K at full load and 350 °C, and a high sensitivity of 34 fF/kPa. These results highlight the potential of these sensors for high-performance applications across various demanding environments
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Sensors. - 25, 3 (2025) , 636, ISSN: 1424-8220
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2025
- Urheber
- DOI
-
10.3390/s25030636
- URN
-
urn:nbn:de:bsz:25-freidok-2624812
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:24 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Ghanam, Muhannad
- Woias, Peter
- Goldschmidtböing, Frank
- Universität
Entstanden
- 2025