Arbeitspapier
Gaussian Semiparametric Estimation of Multivariate Fractionally Integrated Processes
This paper analyzes the semiparametric estimation of multivariate long-range dependent processes. The class of spectral densities considered is motivated by and includes those of multivariate fractionally integrated processes. The paper establishes the consistency of the multivariate Gaussian semiparametric estimator (GSE), which has not been shown in other work, and the asymptotic normality of the GSE estimator. The proposed GSE estimator is shown to have a smaller limiting variance than the two-step GSE estimator studied by Lobato (1999). Gaussianity is not assumed in the asymptotic theory. Some simulations confirm the relevance of the asymptotic results in samples of the size used in practical work.
- Sprache
-
Englisch
- Erschienen in
-
Series: Queen's Economics Department Working Paper ; No. 1062
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- Thema
-
fractional integration
long memory
semiparametric estimation
Stochastischer Prozess
Nichtparametrisches Verfahren
Stochastischer Prozess
Nichtparametrisches Verfahren
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Shimotsu, Katsumi
- Ereignis
-
Veröffentlichung
- (wer)
-
Queen's University, Department of Economics
- (wo)
-
Kingston (Ontario)
- (wann)
-
2006
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Shimotsu, Katsumi
- Queen's University, Department of Economics
Entstanden
- 2006