Arbeitspapier

Gaussian Semiparametric Estimation of Multivariate Fractionally Integrated Processes

This paper analyzes the semiparametric estimation of multivariate long-range dependent processes. The class of spectral densities considered is motivated by and includes those of multivariate fractionally integrated processes. The paper establishes the consistency of the multivariate Gaussian semiparametric estimator (GSE), which has not been shown in other work, and the asymptotic normality of the GSE estimator. The proposed GSE estimator is shown to have a smaller limiting variance than the two-step GSE estimator studied by Lobato (1999). Gaussianity is not assumed in the asymptotic theory. Some simulations confirm the relevance of the asymptotic results in samples of the size used in practical work.

Language
Englisch

Bibliographic citation
Series: Queen's Economics Department Working Paper ; No. 1062

Classification
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Subject
fractional integration
long memory
semiparametric estimation
Stochastischer Prozess
Nichtparametrisches Verfahren
Stochastischer Prozess
Nichtparametrisches Verfahren

Event
Geistige Schöpfung
(who)
Shimotsu, Katsumi
Event
Veröffentlichung
(who)
Queen's University, Department of Economics
(where)
Kingston (Ontario)
(when)
2006

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Shimotsu, Katsumi
  • Queen's University, Department of Economics

Time of origin

  • 2006

Other Objects (12)