Arbeitspapier
Gaussian Semiparametric Estimation of Multivariate Fractionally Integrated Processes
This paper analyzes the semiparametric estimation of multivariate long-range dependent processes. The class of spectral densities considered is motivated by and includes those of multivariate fractionally integrated processes. The paper establishes the consistency of the multivariate Gaussian semiparametric estimator (GSE), which has not been shown in other work, and the asymptotic normality of the GSE estimator. The proposed GSE estimator is shown to have a smaller limiting variance than the two-step GSE estimator studied by Lobato (1999). Gaussianity is not assumed in the asymptotic theory. Some simulations confirm the relevance of the asymptotic results in samples of the size used in practical work.
- Language
-
Englisch
- Bibliographic citation
-
Series: Queen's Economics Department Working Paper ; No. 1062
- Classification
-
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- Subject
-
fractional integration
long memory
semiparametric estimation
Stochastischer Prozess
Nichtparametrisches Verfahren
Stochastischer Prozess
Nichtparametrisches Verfahren
- Event
-
Geistige Schöpfung
- (who)
-
Shimotsu, Katsumi
- Event
-
Veröffentlichung
- (who)
-
Queen's University, Department of Economics
- (where)
-
Kingston (Ontario)
- (when)
-
2006
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Shimotsu, Katsumi
- Queen's University, Department of Economics
Time of origin
- 2006