Arbeitspapier
Popular edges and dominant matchings
Given a bipartite graph G=(A B, E) with strict preference lists and given an edge e E, we ask if there exists a popular matching in G that contains e. We call this the popular edge problem. A matching M is popular if there is no matching M' such that the vertices that prefer M' to M outnumber those that prefer M to M'. It is known that every stable matching is popular; however G may have no stable matching with the edge e. In this paper we identify another natural subclass of popular matchings called "dominant matchings" and show that if there is a popular matching that contains the edge e, then there is either a stable matching that contains e or adominant matching that contains e. This allows us to design a linear time algorithm for identifying the set of popular edges. When preference lists are complete, we show an O(n3) algorithm to find a popular matching containing a given set of edges or report that none exists, where n = |A| + |B|.
- ISBN
-
978-615-5457-15-9
- Sprache
-
Englisch
- Erschienen in
-
Series: IEHAS Discussion Papers ; No. MT-DP - 2017/25
- Klassifikation
-
Wirtschaft
Computational Techniques; Simulation Modeling
Bargaining Theory; Matching Theory
- Thema
-
popular matching
matching under preferences
dominant matching
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Cseh, Ágnes
Kavitha, Telikepalli
- Ereignis
-
Veröffentlichung
- (wer)
-
Hungarian Academy of Sciences, Institute of Economics
- (wo)
-
Budapest
- (wann)
-
2017
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Cseh, Ágnes
- Kavitha, Telikepalli
- Hungarian Academy of Sciences, Institute of Economics
Entstanden
- 2017