Arbeitspapier

Popular matchings in complete graphs

Our input is a complete graph G on n vertices where each vertex has a strictranking of all other vertices in G. The goal is to construct a matching in G that is "globallystable" or popular. A matching M is popular if M does not lose a head-to-head election againstany matching M': here each vertex casts a vote forthe matching in {M,M'} in which it gets abetter assignment. Popular matchings need not exist in the given instance G and the popularmatching problem is to decide whether one exists or not. The popular matching problem in Gis easy to solve for odd n. Surprisingly, the problem becomes NP-hard for even n, as we showhere. This seems to be the first graph theoretic problem that is efficiently solvable when n hasone parity and NP-hard when n has the other parity.

Sprache
Englisch

Erschienen in
Series: CERS-IE Working Papers ; No. CERS-IE WP - 2020/4

Klassifikation
Wirtschaft
Computational Techniques; Simulation Modeling
Bargaining Theory; Matching Theory
Thema
popular matching
NP-completeness
polynomial algorithm
stable matching

Ereignis
Geistige Schöpfung
(wer)
Cseh, Ágnes
Kavitha, Telikepalli
Ereignis
Veröffentlichung
(wer)
Hungarian Academy of Sciences, Institute of Economics, Centre for Economic and Regional Studies
(wo)
Budapest
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Cseh, Ágnes
  • Kavitha, Telikepalli
  • Hungarian Academy of Sciences, Institute of Economics, Centre for Economic and Regional Studies

Entstanden

  • 2020

Ähnliche Objekte (12)