Arbeitspapier
Popular matchings in complete graphs
Our input is a complete graph G on n vertices where each vertex has a strictranking of all other vertices in G. The goal is to construct a matching in G that is "globallystable" or popular. A matching M is popular if M does not lose a head-to-head election againstany matching M': here each vertex casts a vote forthe matching in {M,M'} in which it gets abetter assignment. Popular matchings need not exist in the given instance G and the popularmatching problem is to decide whether one exists or not. The popular matching problem in Gis easy to solve for odd n. Surprisingly, the problem becomes NP-hard for even n, as we showhere. This seems to be the first graph theoretic problem that is efficiently solvable when n hasone parity and NP-hard when n has the other parity.
- Sprache
-
Englisch
- Erschienen in
-
Series: CERS-IE Working Papers ; No. CERS-IE WP - 2020/4
- Klassifikation
-
Wirtschaft
Computational Techniques; Simulation Modeling
Bargaining Theory; Matching Theory
- Thema
-
popular matching
NP-completeness
polynomial algorithm
stable matching
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Cseh, Ágnes
Kavitha, Telikepalli
- Ereignis
-
Veröffentlichung
- (wer)
-
Hungarian Academy of Sciences, Institute of Economics, Centre for Economic and Regional Studies
- (wo)
-
Budapest
- (wann)
-
2020
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Cseh, Ágnes
- Kavitha, Telikepalli
- Hungarian Academy of Sciences, Institute of Economics, Centre for Economic and Regional Studies
Entstanden
- 2020