Arbeitspapier
Popular matchings with two-sided preferences and one-sided ties
We are given a bipartite graph G = (A B;E) where each vertex has a preference list ranking its neighbors: in particular, every a A ranks its neighbors in a strict order of preference, whereas the preference list of any b B may contain ties. A matching M is popular if there is no matching M' such that the number of vertices that prefer M' to M exceeds the number of vertices that prefer M to M'. We show that the problem of deciding whether G admits a popular matching or not is NP-hard. This is the case even when every b B either has a strict preference list or puts all its neighbors into a single tie. In contrast, we show that the problem becomes polynomially solvable in the case when each b B puts all its neighbors into a single tie. That is, all neighbors of b are tied in b's list and b desires to be matched to any of them. Our main result is an O(n2) algorithm (where n = |A B|) for the popular matching problem in this model. Note that this model is quite different from the model where vertices in B have no preferences and do not care whether they are matched or not.
- ISBN
-
978-615-5457-13-5
- Sprache
-
Englisch
- Erschienen in
-
Series: IEHAS Discussion Papers ; No. MT-DP - 2017/23
- Klassifikation
-
Wirtschaft
Computational Techniques; Simulation Modeling
Bargaining Theory; Matching Theory
- Thema
-
popular matching
NP-complete
polynomial algorithm
ties
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Cseh, Ágnes
Huang, Chien-Chung
Kavitha, Telikepalli
- Ereignis
-
Veröffentlichung
- (wer)
-
Hungarian Academy of Sciences, Institute of Economics
- (wo)
-
Budapest
- (wann)
-
2017
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Cseh, Ágnes
- Huang, Chien-Chung
- Kavitha, Telikepalli
- Hungarian Academy of Sciences, Institute of Economics
Entstanden
- 2017