Arbeitspapier

Maximum likelihood estimation for non-stationary location models with mixture of normal distributions

We consider an observation-driven location model where the unobserved location variable is modeled as a random walk process and where the error variable is from a mixture of normal distributions. The mixed normal distribution can approximate many continuous error distributions accurately. We obtain a flexible modeling framework which is particularly designed for robust filtering and forecasting. We provide sufficient conditions for the strong consistency and asymptotic normality of the maximum likelihood estimator of the parameter vector in the specified model. The asymptotic properties are valid under correct model specification and can be generalized to allow for potential misspecification of the model. A simulation study is carried out to monitor the forecast accuracy improvements when extra mixture components are added to the model. In an empirical study we show that our approach is able to outperform alternative observation-driven location models in forecast accuracy for a time-series of electricity spot prices.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. TI 2022-001/III

Klassifikation
Wirtschaft
Estimation: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Thema
time-varying parameters
asymmetric and heavy-tailed distributions
robust filter
invertibility
consistency
asymptotic normality

Ereignis
Geistige Schöpfung
(wer)
Blasques, Francisco
van Brummelen, Janneke
Gorgi, Paolo
Koopman, Siem Jan
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2022

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Blasques, Francisco
  • van Brummelen, Janneke
  • Gorgi, Paolo
  • Koopman, Siem Jan
  • Tinbergen Institute

Entstanden

  • 2022

Ähnliche Objekte (12)