A First Application of Machine and Deep Learning for Background Rejection in the ALPS II TES Detector

Abstract: Axions and axion‐like particles are hypothetical particles predicted in extensions of the standard model and are promising cold dark matter candidates. The Any Light Particle Search (ALPS II) experiment is a light‐shining‐through‐the‐wall experiment that aims to produce these particles from a strong light source and magnetic field and subsequently detect them through a reconversion into photons. With an expected rate ≈1 photon per day, a sensitive detection scheme needs to be employed and characterized. One foreseen detector is based on a transition edge sensor (TES). Here, the machine and deep learning algorithms for the rejection of background events recorded with the TES are investigated. A first application of convolutional neural networks to classify time series data measured with the TES is also presented.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
A First Application of Machine and Deep Learning for Background Rejection in the ALPS II TES Detector ; day:05 ; month:05 ; year:2023 ; extent:8
Annalen der Physik ; (05.05.2023) (gesamt 8)

Creator
Meyer, Manuel
Isleif, Katharina
Januschek, Friederike
Lindner, Axel
Othman, Gulden
Rubiera Gimeno, José Alejandro
Schwemmbauer, Christina
Schott, Matthias
Shah, Rikhav

DOI
10.1002/andp.202200545
URN
urn:nbn:de:101:1-2023050615030620828407
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:48 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Meyer, Manuel
  • Isleif, Katharina
  • Januschek, Friederike
  • Lindner, Axel
  • Othman, Gulden
  • Rubiera Gimeno, José Alejandro
  • Schwemmbauer, Christina
  • Schott, Matthias
  • Shah, Rikhav

Other Objects (12)