A First Application of Machine and Deep Learning for Background Rejection in the ALPS II TES Detector
Abstract: Axions and axion‐like particles are hypothetical particles predicted in extensions of the standard model and are promising cold dark matter candidates. The Any Light Particle Search (ALPS II) experiment is a light‐shining‐through‐the‐wall experiment that aims to produce these particles from a strong light source and magnetic field and subsequently detect them through a reconversion into photons. With an expected rate ≈1 photon per day, a sensitive detection scheme needs to be employed and characterized. One foreseen detector is based on a transition edge sensor (TES). Here, the machine and deep learning algorithms for the rejection of background events recorded with the TES are investigated. A first application of convolutional neural networks to classify time series data measured with the TES is also presented.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
A First Application of Machine and Deep Learning for Background Rejection in the ALPS II TES Detector ; day:05 ; month:05 ; year:2023 ; extent:8
Annalen der Physik ; (05.05.2023) (gesamt 8)
- Urheber
-
Meyer, Manuel
Isleif, Katharina
Januschek, Friederike
Lindner, Axel
Othman, Gulden
Rubiera Gimeno, José Alejandro
Schwemmbauer, Christina
Schott, Matthias
Shah, Rikhav
- DOI
-
10.1002/andp.202200545
- URN
-
urn:nbn:de:101:1-2023050615030620828407
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:48 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Meyer, Manuel
- Isleif, Katharina
- Januschek, Friederike
- Lindner, Axel
- Othman, Gulden
- Rubiera Gimeno, José Alejandro
- Schwemmbauer, Christina
- Schott, Matthias
- Shah, Rikhav