Arbeitspapier

Analysis of variance for bayesian inference

This paper develops a multi-way analysis of variance for non-Gaussian multivariate distributions and provides a practical simulation algorithm to estimate the corresponding components of variance. It specifically addresses variance in Bayesian predictive distributions, showing that it may be decomposed into the sum of extrinsic variance, arising from posterior uncertainty about parameters, and intrinsic variance, which would exist even if parameters were known. Depending on the application at hand, further decomposition of extrinsic or intrinsic variance (or both) may be useful. The paper shows how to produce simulation-consistent estimates of all of these components, and the method demands little additional effort or computing time beyond that already invested in the posterior simulator. It illustrates the methods using a dynamic stochastic general equilibrium model of the US economy, both before and during the global financial crisis.

Sprache
Englisch

Erschienen in
Series: ECB Working Paper ; No. 1409

Klassifikation
Wirtschaft
Bayesian Analysis: General
Forecasting Models; Simulation Methods
Thema
Analysis of variance
Bayesian inference
posterior simulation
predictive distributions

Ereignis
Geistige Schöpfung
(wer)
Geweke, John
Amisano, Gianni
Ereignis
Veröffentlichung
(wer)
European Central Bank (ECB)
(wo)
Frankfurt a. M.
(wann)
2011

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Geweke, John
  • Amisano, Gianni
  • European Central Bank (ECB)

Entstanden

  • 2011

Ähnliche Objekte (12)