Arbeitspapier

BayesMultiMode: Bayesian Mode Inference in R

Multimodal empirical distributions arise in many fields like Astrophysics, Bioinformatics, Climatology and Economics due to the heterogeneity of the underlying populations. Mixture processes are a popular tool for accurate approximation of such distributions and implied mode detection. Using Bayesian mixture models and methods, BayesMultiMode estimates posterior probabilities of the number of modes, their locations and uncertainty, yielding a powerful tool for mode inference. The approach works in two stages. First, a flexible mixture with an unknown number of components is estimated using a Bayesian MCMC method due to Malsiner-Walli, Frühwirth-Schnatter, and Grün (2016). Second, suitable detection algorithms are employed to estimate modes for continuous and discrete probability distributions. Given these mode estimates, posterior probabilities for the number of modes, their locations and uncertainties are constructed. BayesMultiMode supports a range of mixture processes, complementing and extending existing software for mixture modeling. The mode detection algorithms implemented in BayesMultiMode also support MCMC draws for mixture estimation generated with external software. The package uses for illustrative purposes both continuous and discrete empirical distributions from the four listed fields yielding credible multiple mode detection with substantial posterior probability where frequentist tests fail to reject the null hypothesis of unimodality.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. TI 2023-041/III

Klassifikation
Wirtschaft
Bayesian Analysis: General
Computational Techniques; Simulation Modeling
Econometric Software
Data Collection and Data Estimation Methodology; Computer Programs: Other Computer Software
Thema
multimodality
mixture distributions
Bayesian estimation
sparse finite mixtures

Ereignis
Geistige Schöpfung
(wer)
Basturk, Nalan
Cross, Jamie
de Knijff, Peter
Hoogerheide, Lennart
Labonne, Paul
van Dijk, Herman K
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2023

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Basturk, Nalan
  • Cross, Jamie
  • de Knijff, Peter
  • Hoogerheide, Lennart
  • Labonne, Paul
  • van Dijk, Herman K
  • Tinbergen Institute

Entstanden

  • 2023

Ähnliche Objekte (12)