Arbeitspapier

A Bayesian approach for inference on probabilistic surveys

We propose a nonparametric Bayesian approach for conducting inference on probabilistic surveys. We use this approach to study whether U.S. Survey of Professional Forecasters density projections for output growth and inflation are consistent with the noisy rational expectations hypothesis. We find that in contrast to theory, for horizons close to two years, there is no relationship whatsoever between subjective uncertainty and forecast accuracy for output growth density projections, both across forecasters and over time, and only a mild relationship for inflation projections. As the horizon shortens, the relationship becomes one-to-one, as the theory would predict.

Sprache
Englisch

Erschienen in
Series: Staff Report ; No. 1025

Klassifikation
Wirtschaft
Bayesian Analysis: General
Estimation: General
Statistical Simulation Methods: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Financial Econometrics
Asset Pricing; Trading Volume; Bond Interest Rates
Contingent Pricing; Futures Pricing; option pricing
International Financial Markets
Thema
Bayesian interface
Bayesian nonparametric
Survey of Professional Forecasters
noisy rational expectations

Ereignis
Geistige Schöpfung
(wer)
Del Negro, Marco
Casarin, Roberto
Bassetti, Federico
Ereignis
Veröffentlichung
(wer)
Federal Reserve Bank of New York
(wo)
New York, NY
(wann)
2022

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Del Negro, Marco
  • Casarin, Roberto
  • Bassetti, Federico
  • Federal Reserve Bank of New York

Entstanden

  • 2022

Ähnliche Objekte (12)